
ht. J. Heat Mm Trm&r. VoL 13, pp. 901-909. Pagar~n PKSS 1970. Rintcd in Great Britain 

k 
n, 

NW 
P? 

P*? 

Pr, 

Re, 

r, 

ro, 
r* 
T:, 

T, 

% 

VARIABLE VISCOSITY ENTRANCE-REGION FLOW 

OF NON-NEWTONIAN LIQUIDS 

A. A. MCKiiLOP, J. C. HARPER, H. J. BADER and A. Y. KORAYEM 

University of Cdifornia, Davis, California, U.S.A. 

(Received 29 August 1968 and in revisedform 3 November 1969) 

Abstract-A numerical solution was obtained for the problem of flow of a non-Newtonian fluid with 
temperature-dependent viscosity in the entrance region of a round tube. The solution, which is based on an 
integral boundary layer approach in the immediate entrance region and a finite difference scheme farther 
downstream, gives pressure drops and Nusselt numbers as functions of downstream distance for a uniform 
entering velocity and a constant tube wall temperature. A power-law model with an Arrhenius-type 
temperature dependency was used to represent the fluid. Results are presented in the form of correlations 
in terms of the parameters n, Pr and H (the ratio of the wall viscosity to entering viscosity) from which 

numerical values can be obtained if values of the viscosity constants of the fluid are known. 

NOMENCLATURE u*, dimensionless axial velocity, u/u, ; 
coefficient in velocity profile ; ul, dimensionless axial velocity, u/u, ; 
heat capacity ; % core velocity ; 
diameter ; U m, average velocity ; 
coefficients of correlation equation (10) ; u, radial velocity ; 
exp (T’/T, - T’/T,) ; VU dimensionless radial velocity, Re v/u,; 
non-Newtonian coefficient of consist- axial distance ; 
ency in power-law expression ; ,“;, dimensionless axial distance, x/roRe; 
thermal conductivity ; x0, dimensionless axial distance, x*/Pr ; 
non-Newtonian fluid behavior index in yp, variable defined by equation (10) ; 
power-law expression ; z, variable defined by equation (10). 
Nusselt number, hD/k; 

pressure ; Greek letters 
dimensionless pressure, p/&i ; 6, momentum boundary-layer thickness ; 
modified Prandtl number, 43 
(Kc/k) (ro/%J1 -” ; 

thermal boundary-layer thickness ; 
6*, dimensionless thickness, 6/r, ; 

Reynolds number (puk-‘5$)/K ; SF, 
radial distance ; 

dimensionless thickness, lit/r0 ; 

4 
tube radius ; 

dimensionless distance, (r. - r)/6 ; 
q, 

dimensionless radial distance, r/r0 ; 
dimensionless distance, (r. - r)/6,; 

8, dimensionless temperature, 
exponential viscosity-temperature co- (T - T)/(T, - T,) ; 
efficient ; PI density ; 
absolute temperature ; 5 shear stress ; 
axial velocity ; z*, dimensionless shear stress, Re z/p u$ 
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Subscripts 

; 

entrance ; 
fully developed ; 

W. wall. 

IN RECENT years interest has increased in the 
flow and heat-transfer characteristics of non- 
Newtonian fluids because of their importance in 
chemical and food-processing industries. This 
paper stems from a general study of liquid food 
products with gross properties attributed to 
pseudoplastic non-Newtonian fluids. Primary 
concern is with the laminar regime, since the 
high viscosity (or consistency ) of such liquids 
rules out turbulent flow in most processing 
applications. At the same time, Prandtl numbers 
are high, and there is likely to be a strong 
dependency of viscosity on temperature. From 
the physical standpoint, the high Prandtl num- 
ber means that thermal development will be 
slow. Fully developed flow may not be achieved 
in many commercial applications, and entrance- 
region effects can be important. Of primary 
interest to the engineer is the gross effect of such 
flow (i.e. pressure drop and heat-transfer co- 
efficients) rather than details cf velocity and 
temperature profiles. The following discussion 
is therefore concerned with the influence of 
variable viscosity on the overall pressure drop 
and local heat-transfer coefficient for non- 
Newtonian liquids in laminar flow in round tube 
with a uniform entering velocity profile. 

The solutions presented are for constant wall 
temperature ; however, the effect of variable 
viscosity should be at least qualitatively inde- 
pendent of the heat-supply mechanism. 
McKillop [l] showed that, for constant- 
property solutions in the entrance region, the 
ratio of constant-heat-flux to constant-wall- 
temperature Nusselt numbers was approxi- 
mately 1.25 over a wide range of variables for 
both Newtonian and non-Newtonian liquids. 
The analysis is based on rheological behavior 
that is described by the power-law equation 

au n 
z = K eT’iT _ __ . ( > ar 

Equation (1) couples the momentum and therm- 
al energy equations so that they must be solved 
simultaneously. Harper and El Sahrigi [2] 
present information from several sources show- 
ing that equation (1) adequately represents the 
behavior of a variety of food products. 

Previous solutions to flow inside circular 
tubes have been either by the integral boundary- 
layer technique or a direct finite difference 
solution of the governing equations themselves. 
As long as the boundary-layer thickness is small 
compared to the tube radius, the integral method 
gives values of the pressure drop which are in 
excellent agreement with experimental data (e.g. 
Campbell and Slattery [3], Bogue [4], and 
Shapiro et al. [5]). The finite-difference tech- 
nique is valid once the boundary layer has 
reached sufficient thickness to include a large 
number ofgrid points. Thus, it is valid a sufficient 
distance downstream, but gives results for 
pressure drop and local heat-transfer coefficients 
which are substantially in error in the immediate 
vicinity of the entrance. The results presented 
here are based on a combination of both 
methods. Frequently. there was a region of 
overlap at intermediate distances where the two 
methods were in agreement. 

Rosenberg and Hellums [6] used the finite 
difference scheme to solve the problem of 
temperature-dependent viscosity flow of New- 
tonian fluids in the entrance region. They 
included no pressure drop information and their 
results for high Prandtl numbers were un- 
fortunately obtained only for regions where the 
numerical method appears to give erroneous 
results. Test [7] used the same numerical 
technique for Newtonian liquids with a para- 
bolic entering velocity profile. His results for 
both pressure drop and Nusselt number, which 
were essentially asymptotic values, could be 
presented in the form of Sieder-Tate type 
corrections. The analytical model was sub- 
stantiated by good agreement between experi- 
mental and calculated velocity profiles. A similar 
solution to Test’s for non-Newtonian liquids was 
obtained by Christiansen and Craig [S] but 
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under more severe restrictions. A constant- 
property solution for non-Newtonian fluids in 
the entrance region was obtained by McKillop 

PI- 
In addition to the above analyses, several 

existing solutions form limits within which the 
current analysis must fall. Sufficiently far from 
the entrance, the effects of both variable vis- 
cosity and developing flow will die out, so that 
the slope of the pressure-drop curve and the 
asymptotic Nusselt numbers should correspond 
to values obtained in constant-property solu- 
tions. In the immediate vicinity of the entrance, 
on the other hand, the solution should be 
approximated by the flat-plate solution. Seban 
[9], who solved this problem for temperature- 
dependent viscosity flow of Newtonian liquids, 
concluded that prediction of local heat-transfer 
coefficients can be made from constant-property 
results if the Prandtl number is based on the 
wall viscosity. Experimental data to confirm the 
results of the present analysis are non-existent. 

The continuity, momentum and thermal 
energy equations from which the velocity and 
temperature profiles are ultimately defined are 
the same for both the boundary layer and finite 
difference methods and can be written in 
dimensionless form as 

v _ -~~,.*!%‘dr* 1- r* s ax* 
0 

(2) 

Ui~+Vr~+f$$f$(r*r*) (3) 

ae ae i a ae 
u’ax*+“‘p=*ar* r*p 

( > 
(4) 

In the above equations, and throughout the 
entire paper, the Prandtl and Reynolds numbers 
are based on the wall temperature and are given 
by the expressions 

t-n 

Re = (pu~Y$)/K. 

For the boundary-layer solution, equations 

(3) and (4) are integrated over the radius. The 
necessary boundary condition defining the core 
velocity is obtained by writing the mechanical 
energy equation to account for all viscous 
dissipation in the boundary layer, as follows : 

1 1 

d d 
- 
dx* s 

u;r* dr*+ 
s dx*p* 

u,r* dr* 

0 0 

1 

-2 s r*z* 0 2 dr* = 0. (5) 
0 

A fourth degree polynomial is chosen to 
represent the velocity profile in order to allow 
for the inflection that can occur with cooling, 
whereas a third degree polynomial was sufficient 
for the temperature profile. The resulting equa- 
tions, obtained in the usual manner, are 

U 
- = a(~*) rj + 3(2 - a) q2 + (3~ - 8) rj3 
UC 

+ (3 - a) V4, (6) 

where the coefficient, a, is a function of x*, and 

(7) 

Details of the solution of the boundary-layer 
equations are given by Bader [lo]. 

For the finite-difference solution, equations 
(2)-(4) were solved by an implicit method. In 
order to preserve linearity, the coefficients of 
the derivatives were evaluated at the upstream 
position. The ensuing matrix form of the equa- 
tions was solved with an algorithm similar to 
that used for a tri-diagonal set. Local Nusselt 
numbers were calculated from the wall tempera- 
ture gradient and the difference between the 
wall and mean fluid temperatures, and the 
pressure drop was obtained from the following 
macroscopic momentum balance equation 

Ap*/2 = 2jufdr* - 1 - yt$dx*. (8) 
0 0 
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Bader [I I] presents details of the fmite- possible to extrapolate or interpolate curves 
difference solution. with a reasonable degree of confidence to be 

consistent with the available data. 
RESULTS AND DISCUSSION 

The independent variables for both the Pressure drop 
boundary layer and finite-difference solutions With the conventions used here, the pressure 
are Pr ; the power law exponent n ; and two drop in fully developed constant-property flow 
temperature parameters, one involving the is given by the expression 
difference between the wall and entering temp- 
eratures, and the other accounting for the effect Ap* = 4 L;-3! ‘x*, 
of the consistency-temperature exponent T’. In ( J 

numerical solutions over a wide range of F or n = I, this expression reduces to Ap* = 
variables, it was found that the effects of the 16x”. If Ap* is plotted against the right-hand side 
latter two parameters can be combined into a of the above expression divided by 16, instead 
single parameter H with an error no greater than of against x*, the fully developed constant- 
5 per cent. The parameter H represents the ratio temperature flow lines for all values of n will 
of the temperature-dependent factor of the coincide with the case of Newtonian flow, and 
apparent viscosity at the wall to that at the the curves for all combinations of n, Pr and H 
entrance and, by equation (1) is given by the will approach a common asymptote. Figure 1 is 
expression such a plot of constant-property (H = 1) pres- 

sure drops for various values of n. 
H = [exp (T’/T,)l/Cev (T’IT,JI The solution is in good agreement with the 

= exp (T’/T, - T’/T,). (9) experimental data of Korayem [12] for n of I.0 
and 0.45, as shown by the points on the figure. 

H is thus greater than 1.0 for cooling, and less Shapiro et al. [S] present both analytical and 
than 1.0 for heating. Data for typical food experimental results for n = 1. Above X* of 
materials [2] show that a temperature difference 
of 200°F would correspond to a value of H of 

_____.~ ___._~~ ~- ~~- 

about 3.0 (or 0.33). ExperImental po~~+s 1121 

As the analysis progressed, it became apparent 
that there are advantages in comparing results 
on the basis of Prandtl numbers calculated at 
the wall temperature rather than the entering 
temperature of the fluid. The numerical solu- 
tions, however, had originally been set up on the 
basis of the entering Prandtl number, and 
results were obtained corresponding to entering 
Prandtl numbers of 1.0, 10, 100 and 1000 at H 
of 5.0, 3.2, 1.6, 1.0,0+664,0.333 and 0.2. Because 

ully developed flow 

of limitations of the program, solutions for the 
boundary-layer method were more difficult to 
obtain as n decreased, as Pr increased, and as H 
departed from unity. Specifically, the number 10 i 

0 01 _-__ 
1” ’ ‘0 .’ 10 ~1 IO 

of heating runs was quite limited, and no valid I 3n+l n 
- -._ XI 

results were obtained for n = f. Even though 4 ” ! ! 

results were missing in some regions, it was FIG. I Constant property pressure drop. 
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Constont property 

\ Fully developed flow 

FIG. 2. Variable property pressure drop for n = 0.7. 

4 x 10T3, which represents the upper limit of 
their experimental data, their analytical results 
and the present solution are in essentially 
complete agreement. At lower values of x*, the 
slope of the line for n = 1 on Fig. 1 is 052, 
whereas both the experimental and analytical 
results of Shapiro et al. agree with the usual 
theoretical slope of 050. Accordingly, there is a 
small discrepancy between the magnitudes of 
the pressure drops at lower values of x*. 

Figure 2 is a plot of pressure drop results 
showing the effects of both heating and cooling 
for n = O-7 and with H of 5 and 0.2. These 
results are typical of all those obtained, and the 
following general observations can be made : 

1. Cooling results in a lower pressure drop 
and heating in a higher pressure drop than 
constant temperature flow. Accordingly, the 
cooling lines approach the asymptotic constant 
property line from below and heating lines from 
above. 

2. At smaller values of x*, all lines become 
straight and parallel to the constant property line. 
Since the constant property line is independent 
of Pr, all lines for a particular n are parallel in 
this region, regardless of the value of Pr or H. 

3. The effect of heating or cooling increases as 
Pr increases. 

To compare the effects of cooling with 
constant-property behavior, we consider the 
case in which the fluid enters at a higher tempera- 
ture and is cooled toward the constant value. 
For cooling, the average viscosity in the 
developing momentum boundary layer at any 
downstream point will always be lower than for 
a constant-property fluid having a viscosity 
corresponding to the wall temperature. Because 
of the lower viscosity in the boundary layer, 
where the viscous dissipation is occurring, the 
pressure drop over any given distance from the 
entrance will be less for cooling. The converse of 
this situation applies to heating. 
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As Pr increases, the thermal penetration is 
smaller, and the effect described above of either 
heating or cooling is accentuated. In the limit of 
infinite Pr, there is no thermal penetration, and 
the flow would be that of constant property 
corresponding to the entering temperature. 
Since x* is directly proportional to the viscosity 
(or consistency coefficient) of the fluid, using the 
entering temperature instead of the wall temp- 
erature in Fig. 2 merely has the effect of shifting 
the lines horizontally by a factor of H. Accord- 
ingly, the infinite Pr lines on Fig. 2 were obtained 
by applying a factor of 5 to the constant property 
line for cooling and 0.2 for heating. At the 
opposite limit of zero Pr, the fluid is heated to 
the wall temperature instantaneously, and the 
pressure drop corresponds to the constant 
property line. 

To provide a convenient form of presentation, 
the data were correlated in terms of equation 
(10) by a least squares method, 

y, = i gizi 
1 

where y, = In (Ap*/Ap$= J and z = In x*. The 
coefficients of this equation are presented in a 
separate tabulation.7 All data are correlated 
over the region low3 < x* < 40 for heating and 
10e2 < x* < 40 for cooling. Below the mini- 
mum value, the lines parallel the constant- 
property solution. The constant-property solu- 
ticn is a straight line for x* c 10w3. Thus if 
pressure drops for values of x* less than mini- 
mum are needed, one can project backwards, 
from the minimum point, at a slope equal to that 
of the constant-property line. The correlation 
equation represents the data with a maximum 
deviation less than 3 per cent. 

_. 

t Tabular material is deposited as document NAPS- 
00620 with the ASIS-National Auxiliary Publications 
Service, c/o CCM Information Sciences, Inc., 22 West 34th 
Street, New York, N.Y. loo01 and may be obtained for11.00 
for microfiche or 63.00 for photocopy. 

Heat transfer 
Although Nusselt numbers are most con- 

veniently represented on a dimensionless basis 
in terms of x0( =x*/Pr), the parameter x* is a 
more direct measure of the physical tube length. 
There is little practical interest in values of x* 
below about 10w3, which corresponds to a tube 
length equal to the radius at the upper limit of 
laminar flow. Where boundary layer solutions 
were available, there was no difficulty in ex- 
tending the plots well below this value of x*. 
The finite difference solution was generally valid 
down to x,, ranging from about low4 to lo-‘, 
corresponding to much higher values of x* at 
the higher Prandtl numbers. Where boundary 
layer solutions could not be completed, as in 
the case of many of the heating runs, there was 
some uncertainty in extrapolating Nusselt num- 
ber plots to the desired lower limit of x*. There 
was judged to be insufficient basis for presenting 
any heat transfer results for n = 4, since no 
boundary layer data were obtainable. Probably 
because of grid size limitations, the finite differ- 
ence solution appeared to give high Nusselt 
numbers for both constant property and heating 
for all values of n at Pr = 1.0. The results 
tabulated? for this condition were obtained by 
making adjustments to give curves that appeared 
to be consistent with the other data. 

At a sufficient distance downstream, Nusselt 
numbers for both heating and cooling must 
approach the asymptotic value that corresponds 
to constant-property flow with a fully developed 
entering velocity profile. These asymptotic 
values are listed in Table 1. If the entrance 
region data for constant-property fully de- 
veloped entering velocity profiles are plotted as 
the ratio of Nu to the asymptotic value, the re- 
sults for all values of n fall on a single line. This 
line, corresponding to the standard GraetL 
solution, constitutes the limiting case of in- 
finite Prandtl number for constant-property 
flow. Below x0 of 5 x lo- 3 it can be represented 
by the equation 

Nu~lNu, = 0.413 x-o.344 
0 (11) 

~~_ 

-f Refer to previous footnote. 
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Table 1. 
Asymptotic local Nusselt numbers 

n Nu 

1.0 3.66 
0.7 3.79 
0.5 3.94 
0.4 4.07 
0.33 4.18 

At higher values of x0, any of the lines for Pr of 
100 or 1000 given by the tabulated coeficients 
can be used for the fully developed line. 

The fact that the constant-property fully 
developed flow lines are the same for all values 
of it (when referred to the asymptotic limit) 
suggests the possibility of a simplification by 
using these lines as reference in plotting the 
constant-property Nusselt number results. It 
was found that if Nu/Nu/ is-plotted against x* 
rather than x0, the lines for each n at Pr of 10, 
100 and 1000 coincide with a maximum devia- 
tion of 3 per cent. All of these lines come together 
in the portion of the fully-developed line corres- 
ponding to equation (11). The lines for Pr of 1.0 
merge with the fully developed line at a higher 
value of x0, where it is no longer straight on a 

Table 2. Ratio of constant-property tofirlly-developed Nusselt 
numbers 

n 1.0 0.7 0.5 

x* 
1o-4 1.78 2.23 2.59 

2 1.64 1.99 2.27 
3 1.58 1.84 2.11 
4 1.52 1.78 2.00 
6 1.46 1.66 1.85 
8 1.41 1.59 1.76 

10-3 1.36 1.53 1.68 
2 1.27 1.37 1.48 
3 1.21 1.30 1.38 
4 1.18 1.25 1.32 
6 1.14 1.19 1.25 
8 1.11 1.15 1.20 

10-Z 109 1.13 1.17 
2 104 1.06 108 
3 1.02 1.03 lQ4 
4 1.01 102 1.03 
6 100 100 101 

logarithmic plot, and thus do not coincide with 
the higher Pr results. The numerical results of 
the plot for the higher Pr are given in Table 2. 
These values, together with the fully developed 
flow line, permit the constant-property Nu to be 
obtained for any Pr. 

In the immediate vicinity of the entrance, 
Nusselt number behavior should approach the 
flat plate solution. For n of 1.0, a logarithmic 
plot of Nu vs. x0 should show a negative slope 
of 0.5, whereas 0.46 was actually obtained. The 
same comparison for other values of n, based on 
the flat plate solution of Acrivos et al. [ 131 gave 
similar results. For all values of n, numerical 
results agree with the flat plate solution within 
2 per cent at x* = 10m4. Because of the difference 
in slopes, agreement is poorer at other values of 
X*. 

FIG. 3. Variable property Nu for n = 0.7 and H = 5.0. 

The curves plotted in Fig. 3 for various Pr at 
n = O-7 and H = 5 are typical of the results for 
cooling. The cooling lines all pass below the 
fully-developed flow line and approach the 
asymptotic limit from below. This effect is 
caused by the decreased velocity gradient at the 
wall that the cooling creates. In heating runs, 
wall velocity gradients are higher than for 
constant-property flow, and Nusselt numbers 
therefore decrease less rapidly toward the 
limiting fully-developed flow line. Accordingly, 
all heating curves lie entirely above the fully- 
developed line. Both cooling and heating lines 
for all n and Pr approach the asymptotic limit 
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at x0 of approximately 1.0. As sufficiently low 
values of x0, the lines become straight with slopes 
essentially equal to those of the constant 
property lines. 

The solution for n = 1 was compared with the 
results of Rosenberg and Hellums [6] for 
constant property (Pr = 2), heating (Pr = 0.2, 
H = 0.1) and cooling (Pr = 20, H = 10). For 
the constant property and heating cases, the two 
solutions agree within 5 per cent over the entire 
range of x0. For cooling, the agreement is good 
at x0 > 10e3, but the line of Rosenberg and 
Hellums drops much lower at smaller values of 
x0 instead of continuing toward the entrance at 
a constant slope. This behavior corresponds to 
the results of the present finite difference 
analysis, and it can be concluded that a much 
finer grid pattern is necessary if the method is to 
be reliable in the immediate vicinity of the 
entrance. 

The tabulated results referred to above in- 
clude coefficients for correlation of the Nusselt 
number results by equation (lo), where y, = In 
(Nu/Nu,i,) and z = In (l/x0). The correlation is 
valid over the region low4 < x0 < lo- ‘). Thus 
for cooling the correlation applies only up to 
the point of minimum value. For values of Nu 
< 10T4 these curves can be extrapolated by 
making them parallel to the constant-property 
solution whose Pr = Pr/H. Results for n = i 

appeared to fall close to those for n = 0.5. In the 
absence of more specific information, it is 
recommended that Nusselt numbers for smaller 
values of n be obtained from those of n = 0.5 by 
applying a factor equal to the ratio of the 
asymptotic Nusselt numbers. 

SUMMARY 

The solutions and correlations presented 
provide a method for calculating entrance- 
region pressure drops and Nusselt numbers at 

constant wall temperature for a liquid with a 
temperature-dependent viscosity. Equation (10) 
gives the variable-viscosity pressure drop and 
Nusselt number in terms of the parameters n. Pr 
and H (the ratio of the wall viscosity to the 
entering viscosity). The results are valid over the 
entire entrance region. 
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ECOULEMENT DAPJS LA REGION D’ENTRBE DE LIQUIDES NON-NEWTONIENS 
A VISCOSITfi VARIABLE 

R&me-Une solution numkrique a &C obtenue pour le problbme de I’&coulement d’un fluide non- 
Newtonien avec une viscositC d&pendant de la temerature dans la rkgion d’entr&e d’un tube circulaire. La 
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solution qui est bask sur une m&ode inttgrale de calcul de la couche limite dans la region d’entrb 
immkdiate et un schtma de diffhences finies plus loin en aval, donne les chutes de pression et les nombres 
de Nusselt en fonction de la distance en aval pour une vitesse d’entrk uniforme et une temp&ature con- 
stante dela paroi dutube. Un modhle deloien puissance avec une dkpendance de latempkrature dutype 
d’Arrhenius a 6tk employ& pour rep&enter le fluide. Des r&sultats sont prksentts sous la forme de corrtla- 
tions en fonction des paramhtres n, Pr et H (rapport de la viscositk par&ale g la viscositb B l’entrb) g 
partir desquels des valeurs numeriques peuvent &re obtenues si l’on connait les valeurs des constantes de 

la viscositk de fluide. 

Z;iHIGKEITSVER,&NDERLICHE EINLAUFSTROMUNG EINER NICHT-NEWTONSCHEN 
FLOSSIGKEIT 

Zusammeufassung-Fiir das Problem der Str(imung einer nicht-Newtonschen Fliissigkeit mit tempera- 
turabhlngiger ZLhigkeit im Eintrittsbereich eines runden Rohres wurde eine numerische Liisung gefunden. 
Die Liisung beruht auf einer integralen Greuzschichtn;iherungg unmittelbar am Eintritt und auf einem 
endlichen Differenzenschema in einigem Abstand davon in Str8mungsrichtung. Der Druckabfall und die 
Nusselt-Zahl werden als Funktion des Abstandes in Strcmungsrichtung fiir eine gleichf(irmige Eintritts- 
geschwindigkeit und konstante Rohrwandtemperatur angegeben. Ein Potenzgesetz-Model1 mit einer 
Temperaturabhgngigkeit vom Arrhenius-Typ wurde verwendet, urn die Fliissigkeit nachzubilden. 

Die Ergebnisse werden in Form von Korrelationen in Ausdriicken der Parameter n,, Pr und n (V :rh%ltnis 
der Wand-Viskositlt zur Eintritts-ViskositLt) angegeben. Numerische Werte kiinnen hiervon erhalten 

werden, wenn die Viskositltskonstanten der Fliissigkeit bekannt sind. 

TE9EHHE HEHbIGTOHOBCKBX xI4QKOCTEm C IIEPEMEHHOfl 
BFI3ICOCTbIO HA BXOAHOM YYACTECE 

hlHOTal.(liS+~OJlyW?HO =IMCJIeHHOe pt?IIIeHAe 3aAaW TWIeHHiI HeHbIOTOHOBCKOti W4&KOCTH 
c 3aBIfcRqefi OT TeixnepaTypbI Bfl3KocTbIo Ha Bx~~H~M ysacTKe KpyrnoB TpyBbI. PemeHue, 
OCHOBaHHOe Ha AHTWpanbHOM MeTORe pWIi+Ta IIOrpaHWIHOrO CJIOH BO BXOAHOZt o6nacTn li 
KOHWIHOltt pa3HOCTHOti CXeMe BHLI3 II0 IIOTOKy, nak!T BOBMO?KHOCTb OIIpeJ+WTb IIepeIIaAbI 
AaBJleHHFIH 3Ha=IeHEIR KpklTepEIH HyccenbraKaK @yIIKIJllIO paCCTOFIHHR BHEl3 II0 IIOTOKy AJIfI 

OAHOpOAHOti CKOpOCTLl Ha BXO,Qe II IIOCTOFIHHOti TeMIEpaTypbI CTeHKEl Tpy6bI. &IfI OIIllCaHWI 
XEiAKOCTH MCIIOJIb30BaJIaCb MOReJIb CTeIIeHHOI'O 3aKOHa C TeMIEpaTypHOti 3aBACAMOCTbIO 
TkUIa3aBHCHMOCTH AppeHayca. Pe3yJIbTaTbIIIpeACTaBJIeHbIBBElAe KOppenFlulrmBnapaMeTpaX 
n, pr II H (OTHOIIIeHLle BHBKOCTM Ha CTeHKe K BRBKOCTM Ha BXOAe), II0 KOTOpbIM MOWHO 
IIOJIyWTb w4cJIeIwbIe 3HaqeHHR, WJIH H3BWTHbI 3Ha9eHIIR K03@l@~MeHTOB BfI3KOCTll 

H(IIAKOCTA. 


