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Abstract—A numerical solution was obtained for the problem of flow of a non-Newtonian fluid with
temperature-dependent viscosity in the entrance region of a round tube. The solution, which is based on an
integral boundary layer approach in the immediate entrance region and a finite difference scheme farther
downstream, gives pressure drops and Nusselt numbers as functions of downstream distance for a uniform
entering velocity and a constant tube wall temperature. A power-law model with an Arrhenius-type
temperature dependency was used to represent the fluid. Results are presented in the form of correlations
in terms of the parameters n, Pr and H (the ratio of the wall viscosity to entering viscosity) from which
numerical values can be obtained if values of the viscosity constants of the fluid are known.

NOMENCLATURE
coefficient in velocity profile;
heat capacity;
diameter;
coefficients of correlation equation (10);
exp(T'/T, — T'/T);
non-Newtonian coefficient of consist-
ency in power-law expression;
thermal conductivity ;
non-Newtonian fluid behavior index in
power-law expression ;
Nusselt number, hD/k;
pressure;
dimensionless pressure, p/3pu2 ;
modified Prandtl number,
(Ke/k) (roftn)' ™"
Reynolds number (pu2~ "r3)/K ;
radial distance;
tube radius;
dimensionless radial distance, r/rq;
exponential viscosity-temperature co-
efficient ;
absolute temperature ;
axial velocity ;

u*, dimensionless axial velocity, u/u,;

u,, dimensionless axial velocity, u/u,,;

u, core velocity;

u, average velocity;

v, radial velocity;

v,, dimensionless radial velocity, Re v/u,,;

x, axial distance;

x*, dimensionless axial distance, x/roRe;

xo, dimensionless axial distance, x*/Pr;

yp variable defined by equation (10);

z,  variable defined by equation (10).
Greek letters

0, momentum boundary-layer thickness;

0, thermal boundary-layer thickness;

0*, dimensionless thickness, 6/rq;

of, dimensionless thickness, é,/r,;

n,  dimensionless distance, (r, — r)/5;

1, dimensionless distance, (r, — r)/d,;

0, dimensicnless temperature,

(T — T)T, — T);

p, density;

7,  shear stress;

7*, dimensionless shear stress, Re 7/p u2,
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Subscripts
e,  entrance;
£, fully developed;
w, wall

IN RECENT years interest has increased in the
flow and heat-transfer characteristics of non-
Newtonian fluids because of their importance in
chemical and food-processing industries. This
paper stems from a general study of liquid food
products with gross properties attributed to
pseudoplastic non-Newtonian fluids. Primary
concern is with the laminar regime, since the
high viscosity (or ‘consistency ) of such liquids
rules out turbulent flow in most processing
applications. At the same time, Prandtl numbers
are high, and there is likely to be a strong
dependency of viscosity cn temperature. From
the physical standpoint, the high Prandtl num-
ber means that thermal development will be
slow. Fully developed flow may not be achieved
in many commercial applications, and entrance-
region effects can be important. Of primary
interest to the engineer is the gross effect of such
flow (i.e. pressure drop and heat-transfer co-
efficients) rather than details cf velocity and
temperature profiles. The following discussion
is therefore concerned with the influence of
variable viscosity on the overall pressure drop
and local heat-transfer coefficient for non-
Newtonian liquids in laminar flow in round tube
with a uniform entering velocity profile.

The solutions presented are for constant wall
temperature; however, the effect of variable
viscosity should be at least qualitatively inde-
pendent of the heat-supply mechanism.
McKillop [1] showed that, for constant-
property solutions in the entrance region, the
ratio of constant-heat-flux to constant-wall-
temperature Nusselt numbers was approxi-
mately 1-25 over a wide range of variables for
both Newtonian and non-Newtonian liquids.
The analysis is based on rheological behavior
that is described by the power-law equation

= KeTl (_ g.> |

(1)
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Equation (1) couples the momentum and therm-
al energy equations so that they must be solved
simultaneously. Harper and E! Sahrigi [2]
present information from several sources show-
ing that equation (1) adequately represents the
behavior of a variety of food products.

Previous solutions to flow inside circular
tubes have been either by the integral boundary-
layer technique or a direct finite difference
solution of the governing equations themselves.
As long as the boundary-layer thickness is small
compared to the tube radius, the integral method
gives values of the pressure drop which are in
excellent agreement with experimental data (e.g.
Campbell and Slattery [3], Bogue [4], and
Shapiro et al. [5]). The finite-difference tech-
nique is valid once the boundary layer has
reached sufficient thickness to include a large
number of grid points. Thus, it is valid a sufficient
distance downstream, but gives results for
pressure drop and local heat-transfer coefficients
which are substantially in error in the immediate
vicinity of the entrance. The results presented
here are based on a combination of both
methods. Frequently, there was a region of
overlap at intermediate distances where the two
methods were in agreement.

Rosenberg and Hellums [6] used the finite
difference scheme to solve the problem of
temperature-dependent viscosity flow of New-
tonian fluids in the entrance region. They
included no pressure drop information and their
results for high Prandtl numbers were un-
fortunately obtained only for regions where the
numerical method appears to give erroneous
results. Test [7] used the same numerical
technique for Newtonian liquids with a para-
bolic entering velocity profile. His results for
both pressure drop and Nusselt number, which
were essentially asymptotic values, could be
presented in the form of Sieder-Tate type
corrections. The analytical model was sub-
stantiated by good agreement between experi-
mental and calculated velocity profiles. A similar
solution to Test’s for non-Newtonian liquids was
obtained by Christiansen and Craig [8] but
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under more severe restrictions. A constant-
property solution for non-Newtonian fluids in
the entrance region was obtained by McKillop
[1]

In addition to the above analyses, several
existing solutions form limits within which the
current analysis must fall. Sufficiently far from
the entrance, the effects of both variable vis-
cosity and developing flow will die out, so that
the slope of the pressure-drop curve and the
asymptotic Nusselt numbers should correspond
to values obtained in constant-property solu-
tions. In the immediate vicinity of the entrance,
on the other hand, the solution should be
approximated by the flat-plate solution. Seban
[91, who solved this problem for temperature-
dependent viscosity flow of Newtonian liquids,
concluded that prediction of local heat-transfer
coefficients can be made from constant-property
results if the Prandtl number is based on the
wall viscosity. Experimental data to confirm the
results of the present analysis are non-existent.

The continuity, momentum and thermal
energy equations from which the velocity and
temperature profiles are ultimately defined are
the same for both the boundary layer and finite
difference methods and can be written in
dimensionless form as

1 du
v, = — r_*J 6x:‘ dr* 2)
0
Ou, ou, 1dp* 1 ¢
Mg TG T age o) )

N B LN V) R
19x% T U1 ar*  Pror \| or*)

In the above equations, and throughout the
entire paper, the Prandtl and Reynolds numbers
are based on the wall temperature and are given
by the expressions

K 1-n
Pr="2 (5‘1> Re = (pu3"rg)/K.

For the boundary-layer solution, equations
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(3) and (4) are integrated over the radius. The
necessary boundary condition defining the core
velocity is obtained by writing the mechanical
energy equation to account for all viscous
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A fourth degree polynomial is chosen to
represent the velocity profile in order to allow
for the inflection that can occur with cooling,
whereas a third degree polynomial was sufficient
for the temperature profile. The resulting equa-
tions, obtained in the usual manner, are

u

L= dxn+32 - an’ + (Ba - 87’

+G-ant, (6
where the coefficient, g, is a function of x*, and

61, 36* 21 + 6%
=1 — —_ 2 3
Sl I ey

(4
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Details of the solution of the boundary-layer
equations are given by Bader [10].

For the finite-difference solution, equations
(2)-(4) were solved by an implicit method. In
order to preserve linearity, the coefficients of
the derivatives were evaluated at the upstream
position. The ensuing matrix form of the equa-
tions was solved with an algorithm similar to
that used for a tri-diagonal set. Local Nusselt
numbers were calculated from the wall tempera-
ture gradient and the difference between the
wall and mean fluid temperatures, and the
pressure drop was obtained from the following
macroscopic momentum balance equation

1 x*
Ap*/2=2[utdr* —1 - [thdx* (8)
0 1]
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Bader [11] presents details of the finite-
difference solution.

RESULTS AND DISCUSSION

The independent variables for both the
boundary layer and finite-difference solutions
are Pr; the power law exponent n; and two
temperature parameters, one involving the
difference between the wall and entering temp-
eratures, and the other accounting for the effect
of the consistency-temperature exponent T". In
numerical solutions over a wide range of
variables, it was found that the effects of the
latter two parameters can be combined into a
single parameter H with an error no greater than
5 per cent. The parameter H represents the ratio
of the temperature-dependent factor of the
apparent viscosity at the wall to that at the
entrance and, by equation (1), is given by the
expression

H = [exp(T'/T,)}/[exp (T'/T.)]

= exp(T/T, = T/T). )
H is thus greater than 1-0 for cooling, and less
than 10 for heating. Data for typical food
materials [2] show that a temperature difference
of 200°F would correspond to a value of H of
about 3-0 (or 0-33).

As the analysis progressed, it became apparent
that there are advantages in comparing results
on the basis of Prandtl numbers calculated at
the wall temperature rather than the entering
temperature of the fluid. The numerical solu-
tions, however, had originally been set up on the
basis of the entering Prandtl number, and
results were obtained corresponding to entering
Prandtl numbers of 1-0, 10, 100 and 1000 at H
of 50, 32, 1-6, 1-0, 0-664, 0-333 and 0-2. Because
of limitations of the program, solutions for the
boundary-layer method were more difficult to
obtain as n decreased, as Pr increased, and as H
departed from unity. Specifically, the number
of heating runs was quite limited, and no valid
results were obtained for n = §. Even though
results were missing in some regions, it was

\. A. McKILLOP, J. C. HARPER, H. J. BADER and A. Y. KORAYEM

possible to extrapolate or interpolate curves
with a reasonable degree of confidence to be
consistent with the available data.

Pressure drop

With the conventions used here, the pressure
drop in fully developed constant-property flow
is given by the expression

Ap* =4 (%—313) x*.

For n =1, this expression reduces to Ap* =
16x*. If Ap* is plotted against the right-hand side
of the above expression divided by 16, instead
of against x*, the fully developed constant-
temperature flow lines for all values of n will
coincide with the case of Newtonian flow, and
the curves for all combinations of n, Pr and H
will approach a common asymptote. Figure 1 is
such a plot of constant-property (H = 1) pres-
sure drops for various values of n.

The solution is in good agreement with the
experimental data of Korayem [12] for n of 1-0
and 0-45, as shown by the points on the figure.
Shapiro et al. [5] present both analytical and
experimental results for n = 1. Above x* of

100

Experimental points {12]
e n=10
an =045

I

l(3/7+1 7
— -1 X
4 ” )

F1G. 1 Constant property pressure drop.
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FIG. 2. Variable property pressure drop for n = 0-7.

4 x 1073, which represents the upper limit of
their experimental data, their analytical results
and the present solution are in essentially
complete agreement. At lower values of x*, the
slope of the line for n =1 on Fig. 1 is 0-52,
whereas both the experimental and analytical
results of Shapiro et al. agree with the usual
theoretical slope of 0-50. Accordingly, there is a
small discrepancy between the magnitudes of
the pressure drops at lower values of x*.

Figure 2 is a plot of pressure drop results
showing the effects of both heating and cooling
for n =07 and with H of 5 and 0-2. These
results are typical of all those obtained, and the
following general observations can be made:

1. Cooling results in a lower pressure drop
and heating in a higher pressure drop than
constant temperature flow. Accordingly, the
cooling lines approach the asymptotic constant
property line from below and heating lines from
above.

2. At smaller values of x*, all lines become
straight and parallel to the constant property line.
Since the constant property line is independent
of Pr, all lines for a particular n are parallel in
this region, regardless of the value of Pr or H.

3. The effect of heating or cooling increases as
Pr increases.

To compare the effects of cooling with
constant-property behavior, we consider the
case in which the fluid enters at a higher tempera-
ture and is cooled toward the constant value.
For cooling, the average viscosity in the
developing momentum boundary layer at any
downstream point will always be lower than for
a constant-property fluid having a viscosity
corresponding to the wall temperature. Because
of the lower viscosity in the boundary layer,
where the viscous dissipation is occurring, the
pressure drop over any given distance from the
entrance will be less for cooling. The converse of
this situation applies to heating.
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As Pr increases, the thermal penetration is
smaller, and the effect described above of either
heating or cooling is accentuated. In the limit of
infinite Pr, there is no thermal penetration, and
the flow would be that of constant property
corresponding to the entering temperature.
Since x* is directly proportional to the viscosity
(or consistency coefficient) of the fluid, using the
entering temperature instead of the wall temp-
erature in Fig. 2 merely has the effect of shifting
the lines horizontally by a factor of H. Accord-
ingly, the infinite Pr lines on Fig. 2 were obtained
by applying a factor of 5 to the constant property
line for cooling and 02 for heating. At the
opposite limit of zero Pr, the fluid is heated to
the wall temperature instantaneously, and the
pressure drop corresponds to the constant
property line.

To provide a convenient form of presentation,
the data were correlated in terms of equation
(10) by a least squares method,

Vp= 2.9 (10)

1

where y, = In (Ap*/Ap%-,) and z = In x*. The
coefficients of this equation are presented in a
separate tabulation.t All data are correlated
over the region 1073 < x* < 40 for heating and
1072 < x* < 40 for cooling. Below the mini-
mum value, the lines parallel the constant-
property solution. The constant-property solu-
ticn is a straight line for x* < 1073, Thus if
pressure drops for values of x* less than mini-
mum are needed, one can project backwards,
from the minimum point, at a slope equal to that
of the constant-property line. The correlation
equation represents the data with a maximum
deviation less than 3 per cent.

+ Tabular material is deposited as document NAPS-
00620 with the ASIS-National Auxiliary Publications
Service, c/o CCM Information Sciences, Inc., 22 West 34th
Street, New York, N.Y. 10001 and may be obtained for$1.00
for microfiche or $3.00 for photocopy.
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Heat transfer

Although Nusselt numbers are most con-
veniently represented on a dimensionless basis
in terms of x4(=x*/Pr), the parameter x* is a
more direct measure of the physical tube length.
There is little practical interest in values of x*
below about 1073, which corresponds to a tube
length equal to the radius at the upper limit of
laminar flow. Where boundary layer solutions
were available, there was no difficulty in ex-
tending the plots well below this value of x*.
The finite difference solution was generaily valid
down to x, ranging from about 10~ to 1072,
corresponding to much higher values of x* at
the higher Prandtl numbers. Where boundary
layer solutions could not be completed, as in
the case of many of the heating runs, there was
some uncertainty in extrapolating Nusselt num-
ber plots to the desired lower limit of x*. There
was judged to be insufficient basis for presenting
any heat transfer results for n = 3, since no
boundary layer data were obtainable. Probably
because of grid size limitations, the finite differ-
ence solution appeared to give high Nusseit
numbers for both constant property and heating
for all values of n at Pr = 1-0. The results
tabulatedt for this condition were obtained by
making adjustments to give curves that appeared
to be consistent with the other data.

At a sufficient distance downstream, Nusselt
numbers for both heating and cooling must
approach the asymptotic value that corresponds
to constant-property flow with a fully developed
entering velocity profile. These asymptotic
values are listed in Table 1. If the entrance
region data for constant-property fully de-
veloped entering velocity profiles are plotted as
the ratio of Nu to the asymptotic value, the re-
sults for all values of n fall on a single line. This
line, corresponding to the standard Graetz
solution, constitutes the limiting case of in-
finite Prandtl number for constant-property
flow. Below x, of 5 x 1072 it can be represented
by the equation

Nug/Nu, = 0413 xq 0344 (11)

1 Refer to previous footnote.
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Table 1.
Asymptotic local Nusselt numbers

n Nu
10 3-66
07 379
05 394
04 407
033 4-18

At higher values of x,, any of the lines for Pr of
100 or 1000 given by the tabulated coefficients
can be used for the fully developed line.

The fact that the constant-property fully
developed flow lines are the same for all values
of n (when referred to the asymptotic limit)
suggests the possibility of a simplification by
using these lines as reference in plotting the
constant-property Nusselt number results. It
was found that if Nu/Nu, is plotted against x*
rather than x,, the lines for each n at Pr of 10,
100 and 1000 coincide with a maximum devia-
tion of 3 per cent. All of these lines come together
in the portion of the fully-developed line corres-
ponding to equation (11). The lines for Pr of 1-0
merge with the fully developed line at a higher
value of x,, where it is no longer straight on a

Table 2. Ratio of constant-property to fully-developed Nusselt

numbers
n 10 07 05
x*
10°+ 178 223 2-59
2 1-64 199 227
3 158 184 211
4 152 178 2:00
6 1-46 1-66 185
8 141 1-59 176
1073 136 1-53 1-68
2 127 1-37 148
3 121 130 1-38
4 118 125 132
6 114 119 125
8 1-11 115 120
1072 109 1113 117
2 104 106 108
3 102 103 104
4 101 102 103
6 100 100 101
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logarithmic plot, and thus do not coincide with
the higher Pr results. The numerical results of
the plot for the higher Pr are given in Table 2.
These values, together with the fully developed
flow line, permit the constant-property Nu to be
obtained for any Pr.

In the immediate vicinity of the entrance,
Nusselt number behavior should approach the
flat plate solution. For n of 1-0, a logarithmic
plot of Nu vs. x, should show a negative slope
of 0-5, whereas 0-46 was actually obtained. The
same comparison for other values of n, based on
the flat plate solution of Acrivos et al. [13] gave
similar results. For all values of n, numerical
results agree with the flat plate solution within
2percentatx* = 10~% Because of the difference
in slopes, agreement is poorer at other values of
x*,

1000

100

Nu

Fully developed flow

Xo

FiG. 3. Variable property Nu for n = 0-7 and H = 5.

The curves plotted in Fig. 3 for various Pr at
n = 0-7 and H = 5 are typical of the results for
cooling. The cooling lines all pass below the
fully-developed flow line and approach the
asymptotic limit from below. This effect is
caused by the decreased velocity gradient at the
wall that the cooling creates. In heating runs,
wall velocity gradients are higher than for
constant-property flow, and Nusselt numbers
therefore decrease less rapidly toward the
limiting fully-developed flow line. Accordingly,
all heating curves lie entirely above the fully-
developed line. Both cooling and heating lines
for all n and Pr approach the asymptotic limit
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at x, of approximately 1-0. As sufficiently low
values of x, the lines become straight with slopes
essentially equal to those of the constant
property lines.

The solution for n = 1 was compared with the
results of Rosenberg and Hellums [6] for
constant property (Pr = 2), heating (Pr = 0-2,
H = 01) and cooling (Pr = 20, H = 10). For
the constant property and heating cases, the two
solutions agree within 5 per cent over the entire
range of x,. For cooling, the agreement is good
at xq > 1073, but the line of Rosenberg and
Hellums drops much lower at smaller values of
X, instead of continuing toward the entrance at
a constant slope. This behavior corresponds to
the results of the present finite difference
analysis, and it can be concluded that a much
finer grid pattern is necessary if the method is to
be reliable in the immediate vicinity of the
entrance.

The tabulated results referred to above in-
clude coefficients for correlation of the Nusselt
number results by equation (10), where y, = In
(Nu/Nu,,,) and z = In (1/x,). The correlation is
valid over the region 107 % < x, < 107 '). Thus
for cooling the correlation applies only up to
the point of minimum value. For values of Nu
< 10™* these curves can be extrapolated by
making them parallel to the constant- property
solution whose Pr = Pr/H. Results for n = %
appeared to fall close to those for n = 0-5. In the
absence of more specific information, it is
recommended that Nusselt numbers for smaller
values of n be obtained from those of n = 0-5 by
applying a factor equal to the ratio of the
asymptotic Nusselt numbers.

SUMMARY
The solutions and correlations presented
provide a method for calculating entrance-
region pressure drops and Nusselt numbers at

J. BADER and A. Y. KORAYEM

constant wall temperature for a liquid with a
temperature-dependent viscosity. Equation (10)
gives the variable-viscosity pressure drop and
Nusselt number in terms of the parameters n, Pr

PR R PR

auu H UIIC ratio 01 lIlC Wdll Vl&b()b]ly to me
entering viscosity). The results are valid over the
entire entrance region.
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ECOULEMENT DANS LA REGION D’ENTREE DE LIQUIDES NON-NEWTONIENS
A VISCOSITE VARIABLE

Résumé—Une solution numeérique a été obtenue pour le probléme de 1’écoulement d’un fluide non-
Newtonien avec une viscosité dépendant de la température dans la région d’entrée d’un tube circulaire. La



VARIABLE VISCOSITY ENTRANCE REGION FLOW

solution qui est basée sur une méthode intégrale de calcul de la couche limite dans la région d’entrée
immédiate et un schéma de différences finies plus loin en aval, donne les chutes de pression et les nombres
de Nusselt en fonction de la distance en aval pour une vitesse d’entrée uniforme et une température con-
stante de la paroi du tube. Un modéle de loi en puissance avec une dépendance de la température du type
d’Arrhenius a été employé pour représenter le fluide. Des résultats sont présentés sous la forme de corréla-
tions en fonction des paramétres n, Pr et H (rapport de la viscosité pariétale & la viscosité a I’entrée) a
partir desquels des valeurs numériques peuvent étre obtenues si I’on connait les valeurs des constantes de
la viscosité de fluide.

ZAHIGKEITSVERANDERLICHE EINLAUFSTROMUNG EINER NICHT-NEWTONSCHEN
FLUSSIGKEIT

Zusammenfassung—Fiir das Problem der Stromung einer nicht-Newtonschen Fliissigkeit mit tempera-
turabhéngiger Zihigkeit im Eintrittsbereich eines runden Rohres wurde eine numerische Losung gefunden.
Die Losung beruht auf einer integralen Greuzschichtniherung unmittelbar am Eintritt und auf einem
endlichen Differenzenschema in einigem Abstand davon in Strémungsrichtung. Der Druckabfall und die
Nusselt-Zahl werden als Funktion des Abstandes in Strémungsrichtung fiir eine gleichférmige Eintritts-
geschwindigkeit und konstante Rohrwandtemperatur angegeben. Ein Potenzgesetz-Modell mit einer
Temperaturabhingigkeit vom Arrhenius-Typ wurde verwendet, um die Flissigkeit nachzubilden.

Die Ergebnisse werden in Form von Korrelationen in Ausdriicken der Parameter n, Pr und = (V :rhiltnis
der Wand-Viskositit zur Eintritts-Viskositit) angegeben. Numerische Werte konnen hiervon erhalien

werden, wenn die Viskosititskonstanten der Fliissigkeit bekannt sind.

TEYEHUE HEHBIOTOHOBCKUX HUIKOCTEN C IEPEMEHHON
BA3KOCTBIO HA BXOOJHOM YYACTHE

Annoranua—IToiiyyeHo 4KcaeHHOE pelleHHe 33a4l TeYeHMA HEeHbIOTOHOBCKOM MHUJKOCTH
¢ 3aBHCAIUEH OT TEMOEPATYPH BASKOCTHI0O HA BXOGHOM YYacTKe Kpyriaoit tpy0ui. Pemenne,
OCHOBAaHHOE HA MHTErPAILHOM MeTOfe pacuéra HOTPAHMYHOTO CJIOH BO BXOAHOU o6macTd M
KOHEYHOM pPAaSHOCTHON CXeMe BHUB II0 MOTOKY, AA8T BOBMOKHOCTH ONPENENNTH Mepernasl
naBieHus u 3Hadenus kputepua Hyccembra kak QyHKUMIO PACCTOAHUA BHU3 [0 MOTOKY AJA
OJIHOPOMHOM CKOPOCTH HA BXOJe M IOCTOAHHOIN TeMIepaTyphl cTeHKH TpYOH. s onucaHus
JKUIKOCTH HCIOJIB30BANACE MOJENb CTEIIeHHOTO B3aKOHA C TeMIIePaTyPHON 3aBHCHMOCTHIO
THIIA 3aBUCHMOCTH AppeHnyca. PesyabTarTsl npeicTaBieHsl B BUe KOppeaAnuii B napaMerpax
n, Pr u H (oTHOINEHMe BSBKOCTM HA CTEHKE K BABKOCTH HA BXOJE), MO KOTOPHIM MOMHO
HONYYWTH YMCJICHHBIE BHAYEHMA, eCIM H3BeCTHHl 3HAUYeHHA KOd(PPHIMEHTOB BF3KOCTU
HUJKOCTH .
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